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ABSTRACT

The construction and analysis for a class of experimental designs

denoted as tied-double-change-over designs are presented. These

designs are useful for situations wherein the treatments are applied

in sequence to an experimental unit and where the effect of a treatment

persists for one period after the period in which the treatment was

applied; they allow estimation of direct and residual treatment effects.

Tied-double-change-over designs are constructed utilizing one, two,

... , t - 1 orthogonal latin squares for t treatments. Although the

analysis is for r rows and for c columns in general, particular

attention is given to the case where r = tq + 1 rows and c = ts columns

for sq = k(t - 1j, for k a positive integer; explicit solutions are

obtained for the situations where the first period results are omitted

from the analysis and where the first period results are included. A

numerical example is used to illustrate the application of the results

to experimental data.



TIED-DOUBLE-CHANGE-OVER DESIGNSL'

W. T. FedererL/ and G. F. AtkinsonL3

I. INTRODUCTION

The experimental design for three treatments in a seven row by six column

design constructed to estimate direct and residual effects was described on

page 454 of Federer [1955]. The analysis of variance and estimators for effects

for this design were presented by Federer and Ferris (1956]. They denoted this

design as a tied-double-change-over design to distinguish it from the double

change-over or similar designs as discussed by Cochran et al. [1941], Williams

[1949, 1950], Patterson [1950, 1951, 1952], Lucas [1951.], Ferris [1957], Patterson

and Lucas [1959], and Sheehe and Bross [1961]. The nomenclature utilized is

analogous to that used by Pearce [19531 for his tied-latin square designs wherein

a sequence of treatments is not applied to the same experimental unit.

In this paper the general methods of constructing tied-double-change-over

designs involving t treatments, r rows (periods), and c columns (sequences)

are presented. The estimators for effects, their variances, and computing

formulae for the sums of squares in the analysis of variance are developed.

Li This work was partially supported under Contract No. DA-1l-022-ORD-2059,

Mathematics Research Center, U.S. Army, University of Wisconsin and N. I. H.
Grant No. RG-5900, Cornell University.
A2 Mathematics Research Center, U.S. Army, University of Wisconsin (on sabbatic
leave from Cornell University).

L3 Cornell University.

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.
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Particular attention is directed to two special cases:

i) t=3, r= 3q+1, c= 3s

ii) t=4, r= 4q+l, c = 4s

A numerical example for t = 3, q = 2, s = 2 is presented to illustrate the

computing procedure. The general case for r rows and c columns is

discussed to some extent.
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II CONSTRUCTION

The construction of tied-double-,hange-over designs is described via

examples. There are basically two types of construction, one involving the

use of t - 1 orthogonal latin squares and the other involving one square for t

even, two squares for t odd, or a subset of the orthogonal latin squares. The

nearer the design is to a balanced arrangement for direct and residual effects of

treatments the more nearly equal will be the variances of differences between

direct and residual treatment effects. The relative variances for direct and

residual effects approach equality as the number of rows, r, increases.

The residual effects considered in this paper are of a specific kind, Xiz,

those that exert an influence or effect only on the observation in the period (row)

immediately following the period in which the treatment was applied. If the

residual effect of a treatment lasts longer than one period this must be considered

in constructing designs to measure residual effects in the successive periods

following application of the treatment. Williams [1949] and Patterson [1952],

have presented results for designs of this type. Also, if a direct effect by

residual effect interaction exists this must also be taken into account when
t

constructing experimental designs to measure these effects.

II-1. Three treatments with two orthogonal 3 X 3 latin squares.

For t = 3 treatments in t - 1 = 2 orthogonal 3 X 3 latin squares the

following design is one which tends to equalize the relative effective number of

replicates for direct and residual effects as the number of rows increases:
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Period Sequence or column number

orrow s=l s=2 s=3 s=4

number 1 2 3 4 5 6 7 8 9 10 11 12 13

1 AB C A B C A B C A B C A

qul 2 B C A C A B B C A C A B B

3 C A B B C A C A B B C A C

3+1 = 4 A B C A B C A B C A B C A

5 C A B B C A C A B B C A C

q=Z 6 B C A C A B B C A C A B B

3(2)+I= 7 A B C A B C A B C A B C A

8 B C A C A B B C A C A B B

q=3 9 C A B B C A C A B B C A C

3(3)+I=10 A B C A B C A B C A B C A

11 C A B B C A C A B B CA C

q=4 12 B C A C A B B C A C A B B

3(4) +1=13 A B C A B C A B C A B C A

14 B C A CA B B CA CAB B

In the above, the three columns for s an even number are identical; likewise,

the three columns for s an odd number are identical. In a similar manner, rows
2

i• 2, 3, and 4 are repeated for q an odd number and rows 5, 6, and 7 are repeated
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for q an even number. Also, the first three rows of the first six columns is an

ordinary double change-over design made up of the two orthogonal 3 X 3 latin

squares.

A second design could be obtained by repeating rows 2, 3, and 4 (or

alternatively, rows 5, 6, and 7) for all q . For this design s > 2 is required,

and in orderto attain the efficiency of the previous design s must be an even

number.

Other designs are possible by making use of repetition both vertically (over

rows) and horizontally (over columns) and by having treatments follow themselves

(e.g. see Federer [1955], Patterson and Lucas [1959], and Atkinson [1963]).

11-2. Four treatments with three orthogonal 4 X 4 latin squares.

For t = 4 treatments in (t - 1) = 3 orthogonal 4 X 4 latin squares with

r = 4q + 1 rows and c = 4s columns, the design is:
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Row or Sequence or column number

period s =I s = 2 s = 3 s= 4

number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

q=1 1 A B C D A B C D A B C D A B C D
2 B A D C D C B A C D A B B A D C
3 C D A B B A D C D C B A C D A B
4 D C B A C D A B B A D C D C B A

4+1 = 5 A B C D A B C.D A B C D A B C D

q=Z 6 C D A B B A D C D C B A C D A B

7 D C B A C D A B B A D C D C B A

8 B A D C D C B A C D A. B B A D C

4(2)+4 1 9 A B C D A B C D A B C D A B C D

q=3 10 D C B A C D A B B A D C D C B A

11 B A D C D C B A C D A B B A D C

12 C DA B B A DC D C B A C D A B

4(3)+1= 13 A B C D A B C D A B C D A B C D

q=4 14 B A D C D C B A C D A B B A D C

15 C D A B B A DC D C B A C D A B

16 D C B A C D A B B A D C D C B A

4(4)+1= 17 A B C D A B C D A B C D A B C D

In the above design the four columns or sequences for s = 1, 4, 7, ... are

identical; the four columns for s = 2, 5, 8, ... are identical; and the four *

columns for s 3, 6, 9, ... are also identical. Likewise, rows 2 to 5 are

C
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identical to rows 14 to 17, 26 to 29, .. ; rows 6 to 9 are identical to rows 18

to 21, 30 to 33, ... ; and rows 10 to 13 are identical to rows 22 to 25, 34 to 37,

... . This repetitiye scheme horizontally and vertically continues for s and q

any positive integer.

As for t = 3, alternative designs for t = 4 are available utilizing one or

two squares and repetitions of tjiese. Also, designs from the first one described

above are available for r and c any positive integer but considerable balance

is obtained when r = 4q + I and c = 4s, resulting in a simplified analysis.

11-3. Use of one or more squares for t an even number.

It has been demonstrated by Williams [1949] and Ferris [19571 that one square

is sufficient to estimate residual and direct effects when t is an even number.

They have listed squares for this purpose. However, if more than t + 1 rows

and t columns are to be used, a more efficient design in the sense of equalizing

the variances on residual and direct effects may be obtained by taking the

additional rows and columns from additional orthogonal latin squares (e. g. see

Bose et al.[1960, 1960, 1961] for a discussion on construction and existence of

orthogonal latin squares and see Fisher and Yates [1938] for a listing of orthogonal

squares for t a prime number or power of a prime number).

The one or more orthogonal basic squares used in a design could be repeated

both vertically and horizontally to obtain the desired number of rows and columns.

But, as before, we note that this type of design will not be as efficient as using

all t - 1 orthogonal latin squares, or as many orthogonal squares as exist, to

construct the design.
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11-4. Use of two or more squares for t odd.

Williams [1949] and Ferris [1957] ha-,e pointed out thht a minimum of two

orthogonal latin squares is necessary to achieve any type of balance and still

allow estimation of direct and residual effects when t is an odd number. (For

t f= 3, say, one could estimate residual and direct effects from 3 rows and

5 columns but this would be an unbalanced arrangement.) The use of as many

orthogonal latin squares as possible would be preferred for any such repetitive

scheme as described in sections II-1 and 11-2 in order to improve the efficiency

of an experimental design.

J0

I
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III. RANDOMIZATION

Once the design has been determined the sequence of treatments in any

column is fixed. Therefore, there can be no randomization among the rows

(periods); the randomization is confinedto randomly allotting the columns to the

experimental units and the letters to the treatments. If there is no stratification

among the experimental units receiving the columns, the following randomization

procedure suffices:

i) Randomly assign the t treatments to the t letters A, B, C, D, ...

ii) Randomly assign the c experimental units (i.e., stores, patients,

students, cows, rats, machines, etc.) receiving a sequence of treatments

to the c sequences (columns)

If the columns are stratified into categories or sets of size t each, then

the second step above is altered as follows:

ii)' Randomly assign the t units in each category to the t columns for

s = 1, s = 2, etc. using a different randomization for each s .

If the columns are stratified into categories of sizes not equal to t then

either ii) or ii)' may be followed unless there is a category by residual effect

or/and category by direct effect interaction. In this event, randomize the required

number of sequences within each category. An unbalanced feature is introduced

into the analysis thus complicating the arithmetic and the algebra.

AAppropriate designs for efficiently measuring residual and direct treatment effects
and interactions are not considered in the present paper.
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IV. ESTIMATORS FOR EFFECTS

Suppose that the observational yield Y ijh is such that it is expressible in

the following linear additive form:

t
Yijh = Nijh(L + yi + Pj + 6h+•Z NiJ- 1 )p Pp + C ijh ()p=l

where Nijh = 1 if the hth treatment appears in ith column and jth row and equals

zero otherwise, N ijlp =1 if the p th treatment appeared in row j - 1 and in the
zootherie

ith column and equals zero otherwise, 1L is an effect common to all observations,

Yi = effect of ith column, Pj = effect of j throw, 6 h = direct effect of hth

treatment, p a residual effect of pth treatment in the period (row) immediately
ro

following the period (row) in which the treatment was applied, f ijh are identically

independently distributed random variates with mean zero and common variance

, i=1,2,... c, J=,,2 h=l, 2p=l 2, t
IE 9 , o , c0 r,, , y 2a p, . o r 1, t

In general Nijh could be the number of observations for the hth treatment

in the jth row and ith column rather than only taking on the values of zero and

one. However, this generality is not followed for the analyses below. Also,
t

SNijh could be zero for certain i and J instead of unity for the results in
h=l
the following section. However, for the results in subsections IV-2 and IV-3, and

in section V it is assumed that I N 1 This makes row and column effects
h=l

orthogonal.

tt



#391 -i1-

IV-l. r and c any positive integer.

Differentiation of the residual sum of squares with respect to the parameters

and equating the resulting equations to zero result in the following normal

equations:

For tr:
c r t c r t t

N..a " +lZ N .. ,yj +L ZN.. + Z N..h 6h + Z Z Z Z N N
1=1 J=l h=l hi=l j =1h =1p=l iji g(J...)p Pp

= Y ... = grand total (2)

For y:
r tr t t

N i. (ý+ y1 ) + L N1 ij.P + ý N ih 6 h +LZj Z 'N ihN ijlhPp
j=h1 h J=l h=l p~l

= Yi = th column total (3)

ForA,:

c t c t t

~1 (R+P 1 )+ ZN i Y y+ L N.Jh6h + Z Z LN ijhN 1( -)l
J ~ 1Whl 1=1 ~ ~

Y.j .J row total (4)

For 6h:

N.c r c t
Z Nih + . Z N j_ P
(=1 j=l h'j l =l N=l ijh= J...I)p p

= Y" hth treatment total (5)
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For

Nij Nj l-)p(GL + Y,+ +6 h + PP
i=1 J=l hal

Z E N •Njh Ni(J-l)p jh = total
i=l j=l h=l

for all observations receiving the pth treatment in the preceding period (row) = Ypp

(&)

A unique solution for the parameters is obtained with the addition of an

appropriate set of restraints, e.g. the following,

a P = L 6 h = L p - 0(
i=1 j=l h=l p=1

and for certain minimum values of r and c . For example, if complete squares

are used then either r > Zt + 1 and/or c > Zt for t, r, and c any positive

integer.

Although equations (2) to (4) could be used to substitute in equations

(5) and (6) to obtain equations involving only 6 h and p parameters this was

not done because particular solutions will be obtained for special values of r

and c . Also, this form of the normal equations is more appropriate for the
t

various forms that tied-double-change-over designs can take. If LNljh = 0
h=llh

for some i and j these equations are immediately useful for these cases, as

well as for Nijh equal any integer.

ii
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IV-2. r = tq + I, c = ts, and sq k(t-1) for k a positive integer.
t

When r =tq+ 1, c =ts, sq =k(t-1l, k a positive integer,.LNt I
h Nlijh l

for all ij, and with the restraints in equation 7) normal equations (2) to (6)

reduce to:

st(tq + 1)= N ... = Y... (8)

(tq + 1) (•+ i)+ yf=X. (9)

(where f = remainder of fraction iut, not a positive integer, and for I/t a

positive integer f = t when the order of the design is as described in sections

II-1 and 11-2.)

ts(4 + P•) = (10)

s(tq + 1)i + 9 h) + ('h+ t+h + .. + t(s_1+h

tsq-t-1 Ph Y..h1)

stq(A + P)P - - s =y (12)t-1 P  Pp

Substitution of the solutions •, ji, and 1I in equations (11) and (12) results in:

- ---"6h t- Ph Y.. E 1[(q-llt+hl.q=l

stq y = h P3}
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stq SIQ 8 p Z Yp + sy. s. "stq + 1) y R 14

Let 6= a t X 1 column vector of treatment direct effects, let p = a t X I

column vector of residual treatment effects, let Q be a t X 1 column vector for

right hand side of (13), and let R be a t X 1 column vector for the right hand

side of (14). Then, the solution for direct and residual effects eliminating all

other effects is:

06

6t (t-l)I I Q
(,t-l)(.tg+l1 15

stq [t (t-2Xtq+2) + 1]

SI (t-Iwtq+2)I Rtq+l

where I is a t X t identity matrix.

Likewise, the solutions for the direct effects ignoring the residual effects

(i. e. setting the residual effects equal to zero and then solving for the direct

effects) and for the residual effects ignoring the direct effects eliminating all

other effects is:

6' tC + 0 Q
tq+ 2

1:- (16)
stq

0 IR
LJ

. !
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With the results in this form the variances of differences between direct

effects and between residual effects is readily obtainable. To illustrate, the

solutions for t = 3 are:

61 2 0 0 1 0 0

S0 2 0 0 1 0oQ

2(3q +l)

63 3 sq(9q+7) 0 0 2 0 0 1.

1 0 0 2(3-qg+ 0 R . (17 )
3q+l 0

0 1 0 0 2(3g+2 0 R.
3q+l

0 0 1 0 0 2(3g+2) R
* 3q+l 3

0 The variance of the difference 61 - 62 is

2 3s(3q+l) 8(3g+l) 2

V(6 1 - 6z) = 3s9q+7) 2 + 2 - 0 - = 3sq(99+7)"e (18)

and the variance of a difference between two residual effects, say - is

Vol- ý= 8(3q+2) 2 (19)

3sq(9q+7) 1

The ratio of the variances of direct effects to residual effects is (3q+l)/(3q+2)

which rapidly approaches unity as q increases.

0t
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For t = 4 treatments the solutions are:

0 1 0 0 1 o 0 0.

62 0 3 oo 0 o 1 0o Q..z

3  0 0 3 0 0 0 1o0 Q.4.3

43(4q+1) Q..o4
S =4 s q( 32q +17) (c+

Pl 4ql 0 0 0 R

4+R 4q+ 1ý2 0 1 00 0 34q+2l 0 0R.2

3( 4q+ 2)

P4  0 0 1 0 0 0 0 R
3 4q+1 3

P40 0 0 1 0 0 0 4+1 R..

The variance between two estimated direct effects, say 61 and 62 is

V(6 1 - &2)= 2 sq(32q + 17) (.2

and the variance between two estimated residual effects, say and is

94ci+ 2)
V(1 2 2 sq(32q+ 17) 2 (22)

The ratio of variances of estimated direct effects to residual effects is (4q+ 1)/

(4q + 2) .
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IV-3. Conditions of section IV-2 with first row omitted.

In certain situations it may be undesirable to include the results of the

first period due to residual effects from the periods preceding the start of the

experiment The omission of results from period (row) one can be handled very

simply. Observing the form of equation QZ) and the form of R in equation

(14), the omission of first row data deletes the -s P1 term from equation (12)

and changes R into the following form:0 p

R' =Y - stqy .(33)

.. p Pp

Now simply replace R with R' in equations (15) and (16) and the

solutions are obtained in the same manner as before.

ai

ai
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V. SUMS OF SQUARJS

The analysis of variance for the tied-double-change-over design takes on
t

the following form for ZNJh =N 1 for all ij, for r = tq+ 1, and c = ts

Source of variation df Sum of squares

Total rc yi=l j=l 1

Correction for mean Y /rc
c

Columns (ign. direct effects) c-I ZYý /r -y /rc
i=l

r0

Rows r-l I Y Jo/C-Y /rc
J=l

Col. x row interaction (ign. (r-l) (c-i) c r l r

direct and residual effects) Z Z - ZY.i=1Jl = j= I "J.

-------------------------------------------------------

Direct effects (eliminating rowst1
and cols.; ignoring residual effect. t-1 6 h h

"h=l

Residual effects (eliminating all t

other effects) t-h Q..h+ Z 0.. p - Q.9h

Error (r-1) (c-1)
-(-l c-I by subtraction

----------------------------------- ------------------- -

Direct effects (elim. all other thtt- +hZ)R
effects)* hQ..h h (P- R': ~ ~=l "p=l ••P

Residual effects (ign. direct t-l t

effects; elim. all other) pl p p
1=Pj
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The symbols in the above analysis of variance are defined in the preceding

equations. The sums of squares for direct effects (eliminating all other effects)

and for residual effects (eliminating all other effects) may be slightly simplified

by obtaining solutions from (13) and (14) for direct effects and residual effects,

respectively. The Q and the R values will be changed.

The "Error" sum of squares divided by the degrees of freedom, (r-l) (c-l) -

2(t-l), yields an estimate of a- which is used in equations (18), (19), (21),

and (22) to obtain the estimated variance of differences between effects.

The above form for the analysis of variance holds for any r and c and/or
t 0

for L N-ijh equal zero or one. The sums of squares in the top part of the table
ihl

will be columns ignoring all other effects but the mean, rows eliminating columns

and mean but ignoring all other effects, and column x row interaction eliminating

rows, columns, and mean but ignoring direct and residual treatment effects. The

last sum of squares is partitioned in the same manner as described in the last

two portions of the above table. The solutions for p, pp and 6are

obtained from the equations in subsection MI-1, i. e., (2) to (7).
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I VI. A NUMERICAL EXAMPLE

The following example with artificial data is used to illustrate the numerical

computations for a tied-double-change-over design:

Column

Row Total

123 4 56

1 C 21 C 21 A ll A 12 B 7 B 18 90

2 A 16 B 20 C 25 B 16 C 20 A 23 120

3 B 18 A 15 B 19 C 26 A ll C 31 120

4 C 26 C 25 A 16 A 17 B I1 B 25 120

5 B 19 A 19 B 18 C 26 A ll C 33 126

6 A 19 B 18 C 28 B 22 C 21 A 24 132

7 C 27 C 28 A 19 A 17 B 15 B 26 132

Totals 146 146 136 136 96 180 840

I

I I
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The various other totals required are (see equations (13) and (14)):

Y = 230 Q = 230 - (136+ 136)/7 - 240 342/7

Y B = 252 -B = 252-(96 + 180)/7 - 240 =-192/7

YC = 358 QC = 358 - (146 + 146)/7 - 240 = 534/7

Y = Z62 R = 262+ 30- 280 =12pA .. A

Y = 262 R = 262 + 30- 280 =1Z
pB B

Y =226 R = 226 + 30 - 280 =-24
PC c

From equation (17) the solutions for the effects are:

62 0 0 1 0 0 -342/7 -4
A

6B 0 2 0 0 1 0 -192/7 -2
0B

6C 0 0 2 0 0 1 534/7 6
7

150 1 0 016/7 0 0 12 -1

0 1 0 0 16/70 12 0

0 0 1 0 0 16/7 -24 1

From equation (16) the solutions for direct ignoring residual and residual ignoring

direct effects are:

6A 7/8 0 0 0 0 0 -342/7 -57/16

6B' 0 7/8 0 0 0 0 -192/7 -32/16

6' 0 0 7/8 0 0 0 534/7 89116

' 12 0 0 0 1 0 0 12 1IPA

' 0 0 0 0 1 0 12 1

p' 0 0 0 0 0 1 -24 -2
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Utilizing the above results, the sums of squares and mean squares in the

analysis of variances follow directly as:
Io

Mean
Source of variation d.f. Sum of squares square

Total 42 18,212

Correction for mean 1 16,800

Columns (ignoring direct effects) 5 520

Rows 6 204

Column x row interaction(ig-
noring direct and residual 30 688
effects)

Direct (ign. residual; elimin-
ating all other effects) 2 653.25

Residual (eliminating all other
effects) 2 18.75 75/8

Error 26 16.00 8/13

Direct (eliminating all other
effects) 2 624. 00 312

Residual (ignoring direct;
eliminating all other effects) 2 48. 00

The column x row interaction is partitioned into the direct plus residual

sum of squares, i.e.

{(-4) (-342)+ (-2) (-192) + 6(534)} / 7 - 12 -•4 672

and the error sum of squares, 688 - 672 = 16.00 .
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The sums of squares for direct ignoring residual and eliminating all else and

residual ignoring direct and eliminating all else are

{ (-57)-342) + (-32)(-192) + 89 (534)}/7 (16) = 653. 25 and 1(12) + 1(12) + (-2X-24) = 48

respectively. Therefore, the sums of squares for direct effects eliminating all

else and for residual effects eliminating all else are

672- 48 = 624 and 672- 653.25 = 18.75

respectively.

From equations (18) and (19) the estimated variances of differences of

direct and of residual effects .

2(7 = 0. 1149 and 8(8) 0.131312(25) (13 12(25) (13

The ratio of the variances for direct effects to residual effects is 7/8

If variances of differences of direct plus residual equal permanent effects

are required these are readily obtained from the results in equations (15) and

(17) . For example the difference between the estimated permanent effects for

treatment A and B is A+19 - 8B " = -4 - 1-(-2) - 0 = -3 the estimated

variance of this difference is

"81' ?1 ) . 3938.
13 150 21672) 18/5
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